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ON THE RELATIVE EQUILIBRIUM OF A GYROSTAT SATELLITE
IN THE GENERALIZED LIMITED CIRCULAR PROBLEM OF THREE BODIES

V.N. RUBANOVSKII

A set of relative equilibriums of a gyrostat satellite is considered in the case
when its center of mass is at one of the rectilinear or triangular libration points.
A clear geometric concept of this set of equilibriums is given. Sufficient condi-
tions of stability are obtained and analyzed.

1. cConsider the three bodies M, M, and M of which M,and M, are material points or
bodies with spherical distribution of mass, and Mis a gyrostat.

We denote by m,my, my and G, Gy, G, the masses and centers of mass of bodies M, M,, M,,
and assume that m; > m, m, >m and points G, and G, move relative to each other on Keplerian
circular orbits of radius a at the orbital angular velocity Q(Q? = f(m,; 4 m,) a™®), where [ is
the gravitational constant.

We introduce the Cartesian coordinate system Geryz with origin at the center of mass of
bodies M, and M, whose z-axis passes through points G; and G,, the z-axis is normal to the
plane of these points orbits, and the y-axis coincides with the direction of motion of point

G, . The coordinate system rotates about its z-axis at constant angular velocity . The
coordinates a, and a, of points G, and G, on the z-axis are

a(d—p) ay = u(ig‘P) _t—w mg (1.1)

a1='_"T: ’ = T+o’ —m—l

We take the principal central axes of inertia of the satellite as the axes of the system
of coordinates Gzr,z3, and define the gyrostat body position in the system of coordinates
Gy zyz by coordinates z, Y,z of its center of mass and Euler's angles @, v, ¢ or cosines of
angles o, P v (s =1, 2, 3) between axes z, and <, ¥, 3, respectively, with

= oy + Gg¥y +asys = 0, =yt oyt ot =1 (1.2)
My = g+ e+ ag? = 1 (1.3)

The quantities oy, fi;, y, are expressed in terms of Euler's angles /1/.

Suppose that the gyrostat rotors rotate at angular velocities that are constant relative
to the satellite body, and denote by k, = const projections of the total gyrostatic moment of
the relative motions of rotors on the zs—axes.

In calculating the force functions U; and U, of Newtonian attraction of the satellite by
points G, and G, we assume the characteristic dimension/ of the satellite to be considerably
smaller than the distances r; = [(x — a;)? + y® + 2%*: (i = 1, 2) between poin:t G and points G, and

G, . Then, neglecting terms of order [¥r] and higher, we have for U; and U,the approximate
expressions /1/

B;m 3 u A+ A, A
= 2 r.; (Al'\?il2 4 Agyio® 4 Agyis® — Akt 3z+ 3)
1 3

1 .
wi=fm;, vi,=-—lr—a)o, +yb+2v.] (i=1,2;s=1,2,3)
1
where A, (s =1, 2, 3) are the principal moments of inertia of the gyrostat, and vy;, are the co-
sines of angles between the z, axes and radius vector r; of point G, relative to point G
The altered potential energy of gravitational and inertia forces acting on the satellite
are in the system of coordinates G,zyz of the form /2/

3
i
W= = Y (@432 + 20k3) — - mO @+ 1) —Us —Us

§==1

We introduce the dimensionless coordinates
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z=at,y=ay,s=at, z,=12/(s=1, 2, 3)

and set
e = l¥a®, A, = P4,/ k, = QPR (s=1,2,3) (1.4)
The formula for W then assumes the form
a2 QW = mWy(a', v, 2') +eW, (&', ¥, 2, O, ¥, ) (1.5)
i, . ! ! B
W1=~——2—-(x2—!—y“)--t—t,———;:j:—.-, ri==ary, {1.6)

pi==(mi+ma)p;y (=12
3
Wy m= e 3 (13 (b g+ Py -+ Zhag + gyt -+ Piaa¥s) — Vol — 20,3, — b4,

8=]

rzl__al)g ”l(wl__ar)a 7
- Pl(rl" 0 M - ) =t ]l”“l’s+£2.; 1.7
= by = by =y, o= hop =i
b=t o l"’s , = ' (xrl_al) + ' (ig;—“z)’ a;=aa;

Equations of the gyrostat relative equilibriums are obtained from the condition of func-
tion W stationarity

0W1 8 aWa U J— p— p—
w e =0 @V e =Ty =0 4.8

We seek a solution of Egs. (1.8) of the form

=z + exq) + o{e) (2'y's) (1.9)
& =B + ety + o (e) (D)

For the determination of quantities z4y, ¥m' %) We have the equations

which are the same as the equations of relative equilibrium of the limited problem of three
bodies in which M is taken as a material point /1l/. Hence three rertilinear and twe triangular,
respectively, L,, L,,L; and L, L, libration points are solutions of these equations.

The quantities Wy, Y, ¢, are determined using the second group of Egs.(1.8) in which one
of the libration points is to be substituted for z',y’,z7 .

To determine Zgyy, ¥ 2w T Y1, 1 we differentiate Eqgs.{1.8) with respect to ¢ on the
assumption that the variables are functions of &, and then set ¢=0, 2’ =2y, ¥ =yw, 3 =
z@y, & =04 © = Py, ¢ = @o. As the result we obtain the equations

il P PW 1 (oW (2.10)
Wy ‘ 1 ’ 1 S 2 ry'g
( gzt >o Zo + < ay" da’ )o o + (52' 6@')0 =" ( d’ ) @y'7)
aW, (@W‘, (6“1 — ( W, L W, . FEW, N 'y’
(Fo)o 0+ (Foaw)o e + 5535)o ™ =~ (8 o%0 — (a8 )y v — (5738 )50 (v
2. Let o), ¥yo =0, 30 =0 be the coordinates of one of the rectilinear libration points.

To determine the gyrostat body orientation in its relative equilibrium we use, instead of the
group of Egs.(1.8), the respective equivalent equations of the directional cosines Oy, Vs (s =
1,2,3) of axes z and z. We cbtain these equation from the condition of function W, station~
arity in which the coordinates of one of the rectilinear libration points are tobe substituted
for ',y,2z. We obtain

3
1 o ! ¥, 1,
=7 ), B et — A7 —2ky.) (2.1)
8=}
. W (3 — ) ! (@l — )2
Bt 1 (31'5 ) +P2((2,5 o)

Since &, Yy: are related by the egualities (1.2) and (1.3), we substitute for Wy the function
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° - 5 1 3
W= W3 -+ 3hhy m; 4 = Ve ohe 1y
where A, v, 0 are undetermined Lagrange multipliers.
The equations of relative equilibrium are of the form

OW,,°/0, = 3ho® [(A, — 0)ay + Ays) == 0 (s =1, 2, 3) (2.2
OW 3,0y = Bhhalety + (v — A )ps — k' = 0 (s = 1, 2, 3) (2.3

To investigate Egs.(1.2), (1.3), (2.2}, and (2.3) we use the method developed in /3/ for
the problem of the gyrostat satellite steady motions in the fieldof a single attracting center.

We £ix v =1 and a, = a, (s = 1, 2, 3), to satisfy relation (1.3) and solve Egs.(1.2), (2.2},
and (2.3) for o, A, v, k,. We obtain

3
o=0y= 2 A,'a," (2.4)
==}
3 3
"' == }‘l) == :': [ Z As,ﬁasiin - ( 2 JAs’as(}g)z]l{l (2 - 5)
&=l 8=1
3
Ti=v="1" ( D Aot —4f)an (1=1,2,3) (2.6)
=]
by == kg’ = 3hohol a0 -+ (vo — 4 ) V30 (i=1,2,3) (2.7)

for hAes=0.
When Xy =0, it is possible to take for 7, any value that satisfies Egs. (1.2}, and de-
termine kp' using (2.3)

B =k’ = (e — AN 10 (i =1, 2, 3) (2.8}

It follows from (2.6) and {(2.5) that the gyrostat body orientation in its relative equili-
brium position is independent of parameter ¥ which affects only the choice of gyrostatic mo-
ments k' and the stability of equilibrium.

The expression for M2 can be taken in the form /3/

h? = D (A’ — Ag")? tzo2agy? > 0 (2.9)
(123)

whose right-hand side vanishes only if in the equilibrium position one of the principal central
axes of inertia of the gyrostat is collinear with the z-axis, Hence Egs.(1.2), (1.3), (2.2),
and (2.3) are solvable for o, A, y,, k,’ with any values of ¥, and «,, linked by equality (1.3).

Thus the gyrostat satellite in its equilibrium position can be directed toward any of
the bodies M, and M, along any arbitrarily chosen in it direction. If the principal central
axis of inertia of the gyrostat is not collinear with axis z {hs == 0}, then to each such direc-
tion correspond two dynamically equivalent equilibrium positions depending on the different
signs of A, and differing by a 180~ turn about an axis collinear with the z-axis. The
quantities #&; differ for these two equilibrium positions by their signs. When the principal
central axis of inertia of the gyrostat is collinear with the axis 2z (A = 0), any equilibrium
position relative to the turn about that axis is possible.

Consider the following two one-parameter sets of relative equilibriums:

apo=1, Gp=0, agp=0, V=0, yy==s8in®, vye=cos i} (2.10)
Fro’ =0, k' ==(vo— A7) sin®, kg’ = (vo— As)cos ¥

a10=0, dp=c088, og=—sind, y1p=0, yyp==sind, Vso=cos? (2.11)
k' =0, ko' ==[vs — As’ + 3 (A" — 4a'Yho" cos? 8] sin ¥,
ks’ =[vo — A4’ + 3(Ay’ — 4 Vb sin? 8] cos &

of which the first was studied by Rumiantsev /2/.

In the eguilibrium position (2.10) the z;-axis is collinear with axis &, and the axes
2, and 3 lie in a plane parallel to yz, with the z3-axis at angle ¥ to the sz-axis, and
the rotor axis is orthogonal to axes z; and =

For solving (2.11), the ay-axis is collinear with the y-axis, and axes z, and g lie
in a plane parallel to zz, with the zs;-axis at angle ¥ to the z-axis, and the rotor axis
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orthogonal to axes z; and y. The sets of relative equilibrium positions of form (2.10) and
{2.11) correspond to points o, =0 (i.=1, 2, 3) of the unit sphere great circles {1.3). If the
ellipsoid of inertia of the gyrostat is symmetric (4; = 4,), the sets (2.10} and (2.11) re-
present all possible relative equilibrium positions of the gyrostat.

We shall now construct exact solutions (for the problem formulated in Sect.l) of equations
(1.8) of the gyrostat relative equilibrium position of form (1.9). The first terms of expan-
sions (1.9) were investigated above in the zero approximation.

Consider the first group of Egs.(1.10) which will be used for a more precise definition
of the position of the gyrostat center of mass in relative equilibrium. For rectlinear libra-
tion points we have

oW, AN . aﬂwl) e
( 8x'2 )az’“i—%' ( ay® )o——i+h’ ( 8z a‘& (2.12)
3
LAY , (aW,) _
( oz’ )°=-§—(W)02(3u,’—i)A,, a Jo=0
=1
8w, 8h
( 32" )0=x°(_5;")ﬂ
w By
P - o> 0
l”(o)_“;‘a + [y — 2y

(2) By ey —3) | Py(Tg — ) ]
et f — T 7 7 7 7
oz’ Jo |2y —a I° 15—

while the second mixed derivatives of W;with respect to z',),s vanish.
Substituting expressions (2.12) into (1.10) we obtain

3
, 1 ok . (2.13)
)= T A T (_Bz’ )o Z (3a,"~1) 4,

=1
‘o o Ao [ Ok
Yo =% 2= m@ \3 o

From this we conclude that when m; st m, the gyrostat center of mass in the relative equil-
ibrium lies in the s-plane at a distance from the libration point of the order of smallness
of the ratio ®/a®. The center of mass lies on the =z-axis only when the equilibrium positions
at which the principal central axis of inertia is collinear with the =z-axis. At all remain-
ing equilibrium positions the center of mass is displaced alsc in the direction normal to the
plane of its orbit by a quantity of the order of smallness of [Mat.

Similar result was obtained in /3/ in the problem of steady motions of a gyrostat satellite
in the field of a single attracting center.

The gyrostat center of mass lies at a libration point in the case of relative equilibriums
for which the conditions

Ro =10, 3 (Asaso® T Ag0e® + Ay05o%) = A5 + 43 -+ 4,

are simultaneously satisfied. This occurs only when solutions of (2.10) are obtained under
the supplementary condition: 24, =4, + 4,.

If m=ms, all of the above conclusions remain valid for the libration points I, and I,,
and for point I; the gyrostat center of mass coincides with that point in the relative equili-
brium, since then (8h/oz"), = 0.

It follows from the second group of Egs.(1.10) that in the relative equilibrium of the
gyrostat the deviation of quantities o, v, k' (¢s=1,2,3) from their values obtained by formulas
{2.5)=(2.8) is of the order of smallness of [¥a%

3. Let us investigate the stability of the gyrostat relative equilibriums (2.6} on the
assumption that its center of mass moves along an unperturbed circular orbit at angular veloc-
ity Q. For this it is necessary to apply to the center of mass control forces /2/ which would
compensate the perturbations due to the gyrostat motion about the center of mass. Then the
equations of motion of the gyrostat admit the generalized energy integral T, + W==const, where

T, is the gyrostat kinetic energy in its motion defined by the system of coordinates G, zyz.

By virtue of the Lagrange theorem the satellite relative equilibrium is stable with respect
to the quantities 4,4, ¢, ¢, V", ¢’, if function W, has then an isolated minimum. Sufficient
conditions of stability are obtained from the stipulations of the positive definiteness of the
second variation &W; in the equilibrium position neighborhood.

In the case of perturbed motion we set
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G == Ogo -+ &gy Vs = Yoo + N {8 = 1, 2, 3)

and obtain

3
’SEWZ* == ’21 [3}3050 (As’ - UO) gsz + 6}\«0}3,10%81’]5 + (VO - As’) 1182] (3 . l}
where variables &, 7, are linked by the relations
3 3 3
By = 32‘1 (?wgs + @gots) == 0, Smy =2 E Yeotts =0, Sy = 2 2 Qo =0 (3.2)
- =1 Bz},

Conditions of positive definiteness of the guadratic form (3.1) on the linear manifold
(3.2) reduce to the form /4/

80> 0, 2g0v0 + 81 >0, A = ggve® + g4y -+ g, > 0 (3.3)
3
go= 3 (4 —00) Bu* = 13" (00 — 41') (00 — A7) (00— 4)
gi==—go 2 (42’ + A5) 10* + 3ha® D (Ay' — 0o} (A5’ — ) to® — e Ae?
{123) {123)

3

3 3 i
g2=§go (1%) A A 10 — 3hy° Bgl A Boo® (12 (An"—~0p) (As'—0T0) 10®-+ 3R ho? [ % A ogod —3he® 3 (A — 00) v.0?]

23} 8=1
B1o == Yao0ias — Yaoleo == Ay {4y’ — A’} Gzetizo (123)

which can be represented in the form /3/

g0 >0, vo>w, (Zgon=~g1+Vg1“—-4gogz) (3.4)

where v, is the greatest of roots w, v, of equation A = 0. The discriminant of this equation
is nonnegative, since otherwise we would have A s 0 with g, 0 and any vy, and the sign of
A would be the same as that of g;. Since by virtue of the second of conditions (3.3) the
degree of instability would then be different for v = kN, where N is a fairly large posi-
tive number, namely, it would be O and 2 for gy, >0 and 1 and 3 for g,<C0, which contradicts
the theory of bifurcations /5/.

Conditions (3.4) coincide with conditions obtained in /3/ for the problem of stability
of the gyrostat satellite relative equilibriums in a field of a single attracting center. The
analysis in /3/ is entirely applicable to the problem considered here.

Let us indicate the sufficient conditions of stability for the relative equilibriums
(2.10) and (2.11}.

For the solution of (2.10) these conditions are of the form

go = Az cos & + Ay’ sin & — 4, >0, vy > v, = Ay cos® & + Ay sin? ¢ (3.5}

and are equivalent to conditions indicated by Rumiantsev in /2/.
To solve (2.11) the trinomial A is factorized

A (A — Av'an®— Ag'age®) (vo— A1) -+ 38a° (A5 — A2 Y020t0502] X [vo — Aoag® — As'tigg® -+ 3k {4y — As') (0ap® — az0%)}
and conditions (3.4) assume the form

gomAll —A2’4202~A3'G302>0, ‘Vo>‘\)1, V0>V2 (3.6)
vy == Ay + Sho (A’ — As")? agolane® (A — Ay gy — Ay'age?)?
vo=Ag'tao® + As'tige® - Bhe” {4y’ — 4s") (Cae® — a5?)

4, Let now zy = p/2, Yo =1V3z, %y = 0 be the coordinates of one of the triangular
libration points. We seek the hydrostat relative equilibriums in the form of expansions (1.9)
whose first terms determine equilibriums in the zero approximation, when the gyrostat center
of mass is at the triangular libration point and orientation of the gyrostat body is obtained
from the second group of Egs.(1.8). Instead of these equations we use the equivalent equa-
tions in directional cosines that are obtained using the condition of stationarity of function
W, in which coordinates of the triangular libration point must be substituted for 2, 4,35 .
We have
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Wy = % i {l_Z‘ (a,2+2 ngapa sign .’I;o) - ?al] 4, — 2]‘1’?:} (4.1)

8=1

We reduce expression (4.l) to a special form by turning unit vectors @ and P of axes z and y
about the z-axis by angle 6
o =acos0+ Psinb, ' = —asinf 4 pcos

where 6 is the angle between the unit vectors @' and «. We denote projections of vectors
@' and fp'on axes x: by a., B (s =14,2,3). Then the expression

D,=dz2+2 Vgpacﬁa sign y( + 34, (4.2)

in the new variables assumes the form
D, = (1 + 2sin® 8 4 ¥ 3p sin 20 sign y/p)) a2+ (1 + 2 cos® 8 — )/ 3p sin 20 sign yio)P,"2 +
2(sin 20 -+ ¥ 3p cos 2 6 sign y,’) a,'B.’

We determine angle 0 using the equation

tg 26 = — V/ 3p sign yiy {4.3)
As the ratio w=my/m, is varied from 0 to oo, parameter p varies from +1 to —1, and
angle 6 from — n/6 to n/6 when yiy >0 and from #n/6 to — /6 when yg) <<O.
Let € be the intersection point of the z-axis with the straight line passing through
the triangular libration point and directed as the unit vector f’. For the coordinate z' = z¢
of point € we have

2 =+ P —VTF

As parameter p is varied from 4 4 to —1, the length of segment G,C, normalized with respect to

a and equal 1
76’ — o' = (1 + p—V T+ 3p%

varies from O to 1 and, consequently, point C travels along the z-axis from point G, to point
G,.
Formula (4.2) with (4.3) and the relation
@2+ B2 p2=1 (s=1, 2,3)
taken into account assumes the form

D,=2V1+3pp 2 —2—VI+3p) v+ 2~ YT+ 3p

Substituting this expression into (4.1} and omitting the unimportant constant term, we cbtain
for function Wy’ the expression
3

W = o Z (BrASBSY — A v — 2,"7,) (4.4)
where -
2y =V T+ 3p% dny=10—3YVTF 3p%, k,'= nk,” (4.5)
and B,/, y. are related by the equalities
1 =Py + Ba Vs H B v =0, Mol md4vt=1 4.6)
My =P 4 B2+ B =1 (4.7

Comparison of (4.6) and (4.7) with (2.1), (1.2) and (1.3) shows that problems of the gyro-
stat relative equilibrium in the cases when its center of mass is at triangular and rectilin-
ear libration points are dynamically equivalent. Hence for the determination of orientation
of a gyrostat whose center of mass is at the triangular libration point it is sufficient to
substitute in (2.4)— (2.9) B, k" and x for a, k' and h,° respectively. As the result we
have
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3
0= 0Cp= 2! AP M =A== E (A" — Ag')*Bgg"B gy’
s==1 (123)

3
Vi = Vo = A (2 AP — Ai') Bio’
=1
BT =k = 3hgubi’ + (o — 4 ) v (1=1,2,8)

when A3=0.

If % =0, it is possible to assign to y;, any values that satisfy equalities (4.6), and

determine ki,” using formulas
B = Fo" = (vg — 4;) Vi (6 =1, 2, 3)

Thus a gyrostat in position of equilibrium can be oriented toward point ¢ by any arbit-
rarily selected direction in it. If the principal central axis of inertia of the gyrostat
does not coincide with unit vector @’ attached to its center of mass (A 0), then to each such
direction correspond two dynamically equivalent equilibrium positions of different signs of %o
which differ by a 180° turn about the unit vector f’. For these two equilibrium positions
the quantities K, are of different signs. If the principal central axis of inertia of the
gyrostat coincides with vector B’ (A, =0), any equilibrium position in relation to the turn
about vector f§' is possible.

Consider the following two sets of relative equilibriums:

Pro” =1, B’ =0, Pao’ = 0, vio =10, 720 =8in &, Y30 = cos & (4.9)
k" =0, kp" = (vg — A') sin §, kg = (vo— A4y) cos®
Bro’ = 0, By’ = co8 9, Pao’ = —in D, y1o =0, Voo =8in 9, By = cos (4.10)

k" =0, ky" = [vo — A" - 3u (A’ — A,") cos? §]sin B,
kgy” = [vo— A"+ % (4" — A,') sin? 9] ces §
which are similar to sets (2.10) and (2.11).

In the solution of (4.9) the z,-axis is collinear with the unit vector §’, axes mand =z,
lie in a plane parallel to vectors « and ¥, with the 2-axis at angle ¢ to the :z-axis, and
the rotor axis is orthogonal to the = -axis and the unit vector @'

In the equilibrium position (4.10) the = -axis is collinear with the unit vector o and
axes =z, and 73 lie in a plane parallel to vectors B’and vy, with the z;-axis at angle ¢ to
the z-axis, and the rotor axis is orthogonal to the =z,-axis and vector «o.

The sets of solutions of form (4.9) and (4.10) correspond to points of great circles
Bie’ =0 (¢t=1,2,3) on the unit sphere (4.7), while for a symmetric gyrostat (4, = 4,) represents
all relative equilibrium positions.

When m, = m,, point C coincides with point G,, and the unit vectors «',§’ coincide with
the unit vectors of axes =#,y. Solution (4.9) then becomes the solution investigated by
Rumiantsev /2/.

Consider the first group of Egs.(1.10) with the aim of defining more accurately the center
of mass position in the relative equilibrium state. In the case of triangular libration points
these equations assume in the system of coordinates Curz with unit vectors « and f'of axes u

and v, the form
RW,\ , 1 (oW, PW, 1 (oW, 4.11
( ou’® )o"(x):—’rr(au' )w(aw >o=—7(6v'ﬂ)o (4.11)

3 3
’ 3 o ! 7
z(l) == 2m (p Z As’“sovso + V3 sign y(o) Z As 5;0\?30)
8=1

8=1

u=au, v=av
2w 3 - *W. 3 J—
( e )o =7 @-Vi+3s5, (—av/z' )0 =—5 2+ VIiF3H

which shows that Egs.(4.l) can be solved for u,), vy, z,/ when ps+1. In the opposite case
one of masses m; or my is zero, and point C coincides with the center of mass of that of
bodies M; or M, whose mass is nonzero. Then it is possible to consider the variables vand z
supplemented by the angular coordinate ¢, as cylindrical coordinates of the gyrostat center
of mass, with the last two of Egs.(4.11l) yielding corrections for obtaining a more precise
definition of the gyrostat center of mass position in its relative equilibrium.

On the basis of (4.1) we conclude that, if for the relative equilibrium the right-hand
side of the last equation is nonzero, the plane of the gyrostat center of mass orbit does not
pass through points G, and G,.

sufficient conditions of relative equilibriums (4.8) and (4.9), and (4.10) are obtained
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from conditions (3.3) and (3.4) also (3.5) and (3.6) by substituting in the latter the quanti-
ties B/, k", % for o, k', h,°, respectively.
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