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ON THE RELATIVE EQUILIBRIUM OF A GYROSTAT SATELLITE 
IN THE GENERALIZED LIMITED CIRCULAR PROBLEM OF THREE BODIES* 

V.N. RUBANOVSKII 

A set of relative equilibriums of a gyrostat satellite is considered in the case 
when its center of mass is at one of the rectilinear or triangular librationpoints. 
A clear geometric concept of this set of equilibriums is given. Sufficient condi- 
tions of stability are obtained and analyzed. 

1. Consider the three bodies Ml, M, and M of which M, and MS are material points or 
bodies with spherical distribution of mass, and Mis a gyrostat. 

We denote by m,m,,m, and G, G,,G, the masses and centers of mass of bodies M,M,, M,, 
and assume that m,>m,m,>m and points ,Gl and G, move relative to each other on Keplerian 
circular orbits of radius a at the orbital angular velocity Q(Qz = f(ml f m,)aw3), where f is 
the gravitational constant. 

We introduce the Cartesian coordinate system G~yz with origin at the center of massof 
bodies M, and M, whose x-axis passes through points G, and G,, the z-axis is normaltothe 
plane of these points orbits, and the y-axis coincides with the direction of motion ofpoint 

Gz * The coordinate system rotates about its z-axis at constant angular velocity 8. The 
coordinates a, and a2 of points G, and G, on the x-axis are 

au--P) 
al=---, 

a (I+ P) ua=g, 
1-w 

p=ifw> W=m, 
ml 

(1.1) 

We take the principal central axes of inertia of the satellite as the axes of the system 
of coordinates Gxrxzxz, and define the gyrostat body position in the system of coordinates 
G,xyz by coordinates x, y,z of its center of mass and Euler's angles ti,$,cp or cosines of 
angles a,, fi8, ~~(5 = 1, 2, 3) between axes x, and x, y,z, respectively, with 

s1 = a1y1 + a,y, + a,y, = 0, ah = Y12 + Y2 + Y2 = 1 (1.2) 

n3 = aI2 + a22 + aa = 1 (1.3) 

The quantities a,, fi8,yB are expressed in terms of Euler's angles /l/. 
Suppose that the gyrostat rotors rotate at angular velocities that are constant relative 

to the satellite body, and denote by k, = constprojections of the total gyrostatic moment of 
the relative motions of rotors on the x,-axes. 

In calculating the force functions Ui and U, of Newtonian attraction of the satelliteby 
points G1 and Gzwe assume the characteristic dimension2 of the satellite to be considerably 
smaller than the distances ri = [(x - ai)z + yz $-zall~' (i = 1, 2) between poin-; G and points G1 and 

Gz - Then, neglecting terms of order la/rq and higher, we have for U1 and U,theapproximate 

expressions /l/ 

ui =y - + $ A,yilz + Azyi22 + A,yis2 _ Al + 2 + AS 
1 1 i 

ILi=f% Yi,=~[(z--ai)a,+yB,+zy,] (i=1,2;s=l,2,3) 2 

where A,(s = 1,2,3) are the principal moments of inertia of the gyrostat, and yis are the co- 
sines of angles between the x, axes and radius vector ri of point G, relative to point G. 

The altered potential energy of gravitational and inertia forces acting on the satellite 
are in the system of coordinates GOryz of the form /2/ 

(WA,Y~~ + 2fik,y,) - $ mW (9 + y”) - LJ1 - Uz 
s=1 

We introduce the dimensionless coordinates 
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and set 

5 = ax', y = ay', 2 = az', 5, = lx,I (s = 1, 2, 3) 

IJ = .Piaz, A, = PA,‘, k, = QPk,’ (s = 1, 2, 3) 

The formula for W then assumes the form 

K?Q-*W = mWr(s', y', 2') + eW, (5', y', z', -6, $, cp) 

~~~-+(,~~+y+$-~, rf = arif, 

P*=(mr+ma)PI (i=%2) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

Equations of the gyrostat relative equilibriums are obtained from the condition of func- 
tion W stationarity 

$+ _.?&_~=o @y's'), +!z+!j!+o 

We seek a solution of Eqs.Cl.8) of the form 

I' = 5~0; + eq,{ + 0 (e) (z'y'z') 

19 = 6, + 8% + 0 (e) @#cp) 

(1.8) 

(1.9) 

For the determination of quantities xcO)', yo)',Zco we have the equations 

aw, aw, aw,_ -=I-=aT;--o 
az‘ 8,’ 

which are the same as the equations of relative equilibrium of the limited problem of three 
bodies in which M is taken as a material point /l/. Hencethreereetilinearandtwo triangular, 
respectively, L,,L,,L, and L,,L, libration points are solutions of these equations. 

The quantities 6,,$,, 'pO are determined using the second group of Eqs.(l.E) in which one 
of the libration points is to be substituted for x’,y’,z’. 

To determine xfI{, ycIl', z(~:, 61, $11, cplwe differentiate Eqs. (1.8) with respect to e on the 
assumption that the variables are functions of a, and then set E = 0, x’ = xrco), .l/‘ = &,j, 2 = 
zto;, Q = 60, 9 = $0. cp = fpo. As the result we obtain the equations 

(1.10) 

2. Let Z(O)', y(0)' = 0, z(0)’ = 0 be the coordinates of one oftherectilinearlibrationpoints. 
To determine the gyrostat body orientation in its relative equilibrium we use, instead of the 
group of Eqs.(l.8), the respective equivalent equations of the directional cosines % YS (3 = 
1,2,3) of ares z and z. We obtain these equation from the condition of function W,station- 
arity in which the coordinates of 'one of the rectilinear libration pointsaretobesubstituted 
for r', y', z'. We obtain 

(2.1) 

Since a,, ys are related by the equalities (1.2) and (1.31, we substitute for Wg"t.he function 
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where h,v, s are undetermined Lagrange multipliers. 
The equations of relative equilibrium are of the form 

aw,*Ol&, -= 3h," [(A,' - @a, + Ay,l --.: 0 (s = 1, 2, 3) (2.2) 

aW,,%y, = 3hh,%, -+- (Y - A,‘)y, - k,’ = 0 (s == 1, 2, 3) (2.3) 

To investigate Eqs.(l.2), (l..3), (2.2), and (2.3) we use the method developed in /3/ for 
the problem of the gyrostat satellite steady motions in the fieldof a singleattractingcenter. 

We fix v = vo and a, = a,$ (s = 1, 2, 3),to satisfy relation (1.3) and solve Eqs.(l.Z), (2.2), 
and (2.3) for a, h, y,, k,‘. We obtain 

:i 
O=DO= ZI; n,'Qz (2.4) 

n==, 

h = ho = f [iI A,‘%o’-- @ A,‘u,~~)~]~~~ 
a 

yi =yi0 = hi’ (lr: A,‘a,0* - Ai’) a40 (i = 1,2,3) 

ki’=ki~= 3h~~‘~*O + (YO-Ai’)Yjo (i= 1,2,3) 

(2.5) 

(2.6) 

(2.7) 

for LJ+O. 

When h, =O, it is possible to take for yio any value that satisfies Eqs.(l.2), and de- 
termine kio'using (2.3) 

h'&' = kio’ = (vo - A;) yio (i = 1, 2, 3) Q.8) 

It follows from (2.6) and (2.5) thatthegyrostat body orientation in its relative equili- 
brium position is independent of parameter Y which affects only the choice of gyrostatic mo- 
ments kio’ and the stability of equilibrium. 

The expression for ho9 can be taken in the form /3/ 

(2.9) 

whose right-hand side vanishes only if in the equilibrium position oneoftheprincipal central 
axes of inertia of the gyrostat is collinear with the x-axis. Hence Eqs.(l.2), (1.3), (2.21, 

and (2.3) are solvable for 0, A, ys, k,' with any values of v. and aso linked by equality (1.3). 

Thus the gyrostat satellite in its equilibrium position can be directed toward any of 

the bodies &f~ and M, along any arbitrarily chosen in it direction. If the principal central 

axis of inertia of the gyrostat is not collinear with axis x(ho#O}, then to each such direc- 
tion correspond two dynamically equivalent equilibrium positions depending on the different 
signs of ho, and differing by a 180° turn about an axis collinear with the z-axis. The 
quantities kio’ differ for these two equilibrium positions by their signs. When the principal 

central axis of inertia of the gyrostat is collinear with the axis 5 (h, =O), any equilibrium 

position relative to the turn about that axis is possible. 

Consider the following two one-parameter sets of relative equilibriums: 

cc~O== 1, a*+=== =O, y10= 0, y20= sin*, y,,=costi 

klo’ =ZI 0, kBO’ = ((to 5;) sin 6, km = (Y,, - A,‘) cos 6 

a10 = 0, aso = cos B, a30 = - sin+, yXo= 0, yzO = sin*, Ao= cosd 

klo’ = 0, kao’ = [v. - -4; + 3 (A,’ -AL) e co9 6) sin 6, 
k,‘= [VO- A,‘+ 3(Ag’- &')ha0sinB8]eos6 

(2.101 

(2.11) 

of which the first was studied by Rumiantsev /2/. 
In the equilibrium position (2.10) the xl-axis is collinear with axis 5, and the axes 

X, and 23 lie in a plane parallel to yz, with the x,-axis at angle 8 to the z-axis, and 

the rotor axis is orthogonal to axes x1 and x. 

For solving (2.111, the xl-axis is collinear with the y-axis, and axes sz and xs lie 
in a plane parallel to zz, with the x,-axis at angle 6 to the z-axis, and the rotor axis 
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orthogonal to axes 21 and y. The sets of relative equilibrium positions of form (2.10) and 

(2.11) correspond to points at, = O(i = 1, 2, 3) of the unit sphere great circles (1.3). If the 
ellipsoid of inertia of the gyrostat is symmetric (AX =A*), the sets (2.10) and (2.11) re- 
present all possible relative equilibrium positions of the gyrostat. 

We shall now construct exact solutions (for the problem formulated in Sect-l) of equations 
(1.8) of the gyrostat relative equilibrium position of form (1.9). The first terms of expan- 

sions (1.9) were investigated above in the zero approximation. 
Consider the first group of Eqs.(l.lO) which will be used for a more precise definition 

of the position of the gyrostat center of mass in relative equilibrium. For rectlinear libra- 

tion points we have 

=--l+hD, 

while the second mixed derivatives of W,with respect to z',$,x' vanish. 
Substituting expressions (2.12) into (1.10) we obtain 

From this 
ibrium lies in 

(2.12) 

(2.13) 

we conclude that when %f% the gyrostat center of mass in the relative equil- 
the za-plane at a distance from the libration point of the order of smallness 

of the ratio P/oP. The center of mass lies on the r-axis only when the equilibrium positions 
at which the principal central axis of inertia is collinear with the z-axis. At all remain- 
ing equilibrium positions the center of mass is displaced also in the direction normal to the 
plane of its orbit by a quantity of the order of smallness of PJas. 

Similar result was obtained in /3/ in the problem of steady motionsofagyrostatsatellite 
in the field of a single attracting center. 

The gyrostat center of mass lies at a libration point in thecaseofrelativeequilibriums 
for which the conditions 

?+,=O, 3(A,~,B+Apap$+A,asc~=A,+A,+A, 

are simultaneously satisfied. This occurs only when solutions of (2.10) are obtained under 
the supplementary condition: ZA,=A, +A,. 

If m,= me, all of the above conclusions remain valid for the libration points L, and L,, 
and for point & the gyrostat center of mass coincides with that point in the relative equili- 
brium, since then (ah/&'), = 0. 

It follows from the second group of Eqs.Cl.10) that in the relative equilibrium of the 
gyrostat the deviation of quantities a,,~,, %‘(a= 1,2,3) from their values obtained by formulas 
(2,5)-(2.8) is of the order of smallness of PP. 

3. Let us investigate the stability of the gyrostat relative equilibriums (2.6) on the 
assumption that its center of mass moves along an unperturbed circular orbit at angular veloc- 
ity B. For this it isnecessary to apply to the center of mass control forces /2/ which would 
compensate the perturbations due to the gyrostat motion about the center of mass. Then the 
equations of motion of the gyrostat admit the generalized energy integral T,+ W= con&, where 

T, is the gyrostat kinetic energy in its motion defined by the system of coordinates Go xvs. 
By virtue of the Lagrange theorem the satellite relative equilibriumis stablewithrespect 

to the quantities 6,$, ~p,iY,q', cp', if function W, has then an isolated minimum. Sufficient 
conditions of stability are obtained from the stipulations of the positive definiteness ofthe 
second variation VW% in the equilibrium position neighborhood. 

In the case of perturbed motion we set 



364 V.N. Rubanovskii 

and obtain 

where variables E,, qs are linked by the relations 

(3.11 

Conditions of positive definiteness of the quadratic form (3.1) on the linear manifold 
(3.2) reduce to the form /4/ 

go > 0, 2wo + g, > 0, A = g,vo2 + glvo -i_ ga > 0 

go=~~~(A,'-o,)B,$=hi'(oo-A,')(uo-dl')(o.-A,.) 

g?-gol~j(As'+ A,')y,oa + %a" ~~,(d,'-oo)(d,'--o,)a,,~-3h,"~~~ 

(3.3) 

gz=go(a,Ap'A&oa -3~~"~~~A~'~,,a~~~(dl'--oo)(A:-uo)al$S- 3h$ao*[~$I A;asoa- 3h~"~&d,'--oo) ylo2j 

@IO = ‘ho%0 - ?ho% = h;;’ (A,' -A,') azougo (123) 

which can be represented in the form /3/ 

go>07 vo> % (2govz= - g1 f I/g+-~gog2) (3.4) 

where V, is the greatest of roots VI, va of equation A = 0. The discriminant ofthisequation 
is nonnegative, since otherwise we would have A #O with g,#O and any vor and the sign of 
A would be the same as that of g,. Since by virtue of the second of conditions (3.3) the 
degree of instability would then be different for vo = rfilv, where N is a fairly large posi- 
tive number, namely, it would be 0 and 2 for go>0 and 1 and 3 for g,<O, which contradicts 
the theory of bifurcations /S/. 

Conditions (3.4) coincide with conditions obtained in /3/ for the problem of stability 
of the gyrostat satellite relative equilibriums in a field of a single attracting center. The 
analysis in /3/ is entirely applicable to the problem considered here. 

Let us indicate the sufficient conditions of stability for the relative equilibriums 
(2.10) and (2.11). 

For the solution of (2.10) these conditions are of the form 

go=A,'coss+d,'sin6-Al'>O, ~~>v~=d~'cos~~++~'sin~~ 

and are equivalent to conditions indicated by Rumiantsev in /2/. 
To solve (2.11) the trinomial A is factorized 

(3.5) 

and conditions (3.4) assume the form 

g, = Al' - ds’u202 - As'ad > 0, vo > ~1, vo > vz 

v1 =dr'+ 3k,"(Aa'- As')aaao%~2 (A,‘-- A,'a~oa-AA3'aaoa)-r 
~~~~~~~~~ + d3'asoa -t_ 3~a0(Ag'-AASI)(aaoe-a~oa) 

(3.6) 

4. Let now x<~) = p/2, y(0)’ =+1/82,~[~~ = 0 be the coordinates of one of the triangular 
libration points. We seek the hydrostat relative equilibriums in the form of expansions (1.9) 
whose first terms determine equilibriums in the zero approximation , when the gyrostat center 

of mass is at the triangular libration point and orientation of the gyrostat body is obtained 
from the second group of Eqs,(l.8). Instead of these equations we use the equivalent equa- 
tions in directional cosines that are obtained using the condition of stationarityof function 

w* in which coordinates of the triangular libration point must be substituted for d, $,.z'. 
We have 
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(4.1) 

We reduce expression (4.1) to a special farm by turning unit vectors a and b of axes x and y 
about the z-axis by angle (3 

a' = aces 0 + fi sin 8, r = -a sin 0 + fi cos e 

where 8 is the angle between the unit vectors a' and a. We denote projections of vectors 
a' and ran axes x8 by czs',$~(s = 1,2,3). Then the expression 

D, = d,% + 2 l/~pa,Bs sign Yio) + 38: (4.2) 

in the new variables assumes the form 

D, = (1 + 2 sins 8 + I/tfp sin 28 sign y&J aSIp+ (1 + 2 co9 e - l/Zp sin 28 sign y{,&'s+ 

2(sin 20 + J/Sp co9 2 8 sign ~Y)cz,'/~~' 

We determine angle 8 using the equation 

tg 28 = - f/B sign yt, (4.3) 

As the ratio w = m,lml is varied from 0 to 00, parameter p varies from + 1 to --I, and 
angle 8 from - n/6 to n/6 when yiO, > 0 and from n/6 to - nl6 when yi,, < 0. 

Let C be the intersection point of the x-axis with the straight line passing through 
the triangular libration point and directed as the unit vector $'. For the coordinate x1= a$ 
of point C we have 

As parameter p is varied from + 1. to --1, thelengthofsegment G,C, normalized with respect to 
a and equal 

varies from 0 to 1 and, consequently, point Ctravels along the x-axis from point Gl topoint 

G,. 
Formula (4.2) with (4.3) and the relation 

ai* + &'* + ysa = 1 (s = 1, 2, 3) 

taken into account assumes the form 

Substituting this expression into (4.1) and omitting the unimportant constant term, we obtain 
for function Wa” the expression 

S 
$w;=+ 

I: 
(3~4,‘~,‘~ - A,‘?,’ - 2k,“y,) (4.4) 

*=I 

where 

2xX1 = VI + 3p*, 4x1= 10 - 3 v 1+ 3p=, k,’ = qk,” (4.5) 

and t’,‘, ys are related by the equalities 

511) =I%'y1+ B!?'Y% + f&'YIl=O* na- YP-t yB* + "r's*= 1 (4.6) 

?ct‘ = PI'" + &,'a + &'a= 1 (4.7) 

Comparison of (4.6) and (4.7) with (2.11, (1.2) and (1.3) shows that problemsofthegyro- 
stat relative equilibrium in the cases when its center of mass is at triangular and rectilin- 
ear libration points are dynamically equivalent. Hence for the determination of orientation 
of a gyrostat whose center of mass is at the triangular libration point it is sufficient to 
substitute in (2.4)- (2.9) fi/,k," and x for a,,k,'and hoa, respectively. As the result we 
have 
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when ?.,,#O. 

yi = -pi0 = a,$-’ pi0 

kin = kiO' = 3h,x&,,'+(v, - Ai')yi,, (i = 1, 2, 3) 

If h,= 0, it is possible to assign to vi0 any values that satisfy equalities (4.6), and 
determine k~" using formulas 

ki" = ho" = (Y,, - Ai') yiO (i = 1, 2, 3) 

Thus a gyrostat in position of equilibrium can be oriented toward point c by any arbit- 
rarily selected direction in it. If the principal central axis of inertia of the gyrostat 
doesnotcoincide with unit vector fi' attached to its center of mass (h,#O), then to each such 
direction correspond two dynamically equivalent equilibrium positions of different signs of X, 
which differ by a 1800 turn about the unit vector fi'. For these two equilibrium positions 
the quantities ki, I are of different signs. If the principal central axis of inertia of the 
gyrostat coincides with vector r (5,= O), any equilibrium position in relation to the turn 
about vector @'is possible. 

Consider the following two sets of relative equilibriums: 

fL/= 1, &'= 0, 3%' = 0, ~~0 = 0, y10 =sin6, vso= cos6 
b" = 0, kiO" = (vO -&')sin 6, k,," = (vO-Aa')cosit 

(4.9) 

f310'= 0, f120' = co8 6, fin'= -sin 6, A0 = 0, y10 -= sin 6, & = cos 6 
km" = 0, k20" = [v,, -Aa'+ 3x(&'- Aj)cosa6] sin 6, 
k," = [vg- Aj+ 3x (A,'-AA,')sin26]ccs6 

(4.10) 

which are similar to sets (2.10) and (2.11). 
In the solution of (4.9) the z,-axis is collinear with the unit vector B', axes 4and z3 

lie in a plane parallel to vectors a' and y, with the x,-axis at angle 6 to the z-axis,and 
the rotor axis is orthogonal to the xl-axis and the unit vector B'. 

In the equilibrium position (4.10) the r,-axis is collinear with the unit vector a' and 
axes Z, and zQ lie in a plane parallel to vectors B'and y, with the x,-axis at angle 6 to 
the r-axis, and the rotor axis is orthogonal to the xl-axis and vector a'. 

The sets of solutions of form (4.9) and (4.10) correspond to points of great circles 
&'=O (t= 1,2,3) on the unit sphere (4.7), while for a symmetric gyrostat (A, =A*) represents 
all relative equilibrium positions. 

When %= q, point C coincides with point GO, and the unit vectors a',fi' coincide with 
the unit vectors of axes z,Y. Solution (4.9) then becomes the solution investigated by 
Rumiantsev /2/. 

Consider the first group of Eqs.(l.lO) with the aim of defining more accuratelythe center 
of mass position in the relative equilibrium state. In the case of triangularlibrationpoints 
these equations assume in the system of coordinates Cuvz with unit vectors a'and fl'of axes u 
and u, the form 

(q&)$ lb;,) = -+(g),, (qg$- &(gi$ (4.11) 

(s),=-+( - z--1+3&q, ($$),=-+(2+JQ+3p') 

which shows that Eqs.(4.1) can be solved for I+~)', vu)', zu)' when p#+1. In the opposite case 

one of masses m, or m, is zero, and point C coincides with the center of mass of that of 

bodies Mior MI whose mass is nonzero. Then it is possible to consider the variables vand z 
supplemented by the angular coordinate cp, as cylindrical coordinates of the gyrostat center 
of mass, with the last two of Eqs.(4.11) yielding corrections for obtaining a more precise 

definition of the gyrostat center of mass position in its relative equilibrium. 
On the basis of (4.1) we conclude that, if for the relative equilibrium the right-hand 

side of the last equation is nonzero, the plane of the gyrostat center of mass orbit does not 
pass through points G1 and G,. 

Sufficient conditions of relative equilibriums (4.8) and (4.9), and (4.10) are obtained 
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from conditions (3.3) and (3.4) also (3.5) and (3.6) by substituting in the latter the quanti- 
ties &', k,", x for a,, k,“,ha*, respectively. 
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